Payments for Ecosystem Services Programs and Climate Change Adaptation in Agriculture

Youngho Kim

PhD Candidate in Agricultural & Resource Economics University of Maryland

USDA CRP Outcomes Webinar, August 2023

Nature-based solutions for climate change mitigation/adaptation

- Nature-Based Solutions Roadmap at COP 27 (Biden-Harris Admin., 2022)
 - "... Bipartisan Infrastructure Law and Inflation Reduction Act made unprecedented investments in **nature-based solutions**, placing forests, agricultural lands and coastal wetlands front and center in the climate fight."
- Climate Change Action Plan 2021-2025 (The World Bank Group) o "... conservation and restoration to improve resilience to climate
 - change and mitigation potential."
- Deploying **Nature-Based Solutions** to Tackle Climate Change and Enhance Resilience (Executive Order 14072, 2022)
- $\checkmark~$ Land use adjustments to existing agricultural land

Payments for ecosystem services (PES) programs build nature-based infrastructure

- Payments for establishing conservation practices on agricultural land
 - CRP and EQIP in the US; Agri-environmental schemes in the EU
- Objective: environmental benefits/amenities
 - Reduction of agricultural nonpoint source water pollution
 - Carbon sequestration benefits
 - Preservation of wildlife habitat
 - Co-benefits: soil and crop resilience to extreme weather events
- $\checkmark\,$ Limited research on the loss mitigation benefits of PES programs

Research Objective: Loss mitigation benefits of PES programs

- **Research Question.** Does the introduction of a new PES program reduce crop loss under extreme weather events?
- **Empirical Analysis**
 - **Policy**: Conservation Reserve Enhancement Program (CREP) (USDA-FSA)
 - **Outcome**: Flooded crop loss (USDA-RMA) 0
 - Method: Synthetic DID 0
 - Data: County-by-year panel, 384 counties during 1989-2022

Findings \checkmark

0000

- Number of flooded crop acres \searrow by 39%
- Extent of damage on flooded crop acres \searrow by 27%
- Spatial and temporal heterogeneity of the loss mitigation benefits

Empirical Framework 00000

Results 00000000000 Conclusion 00

Why is it important?

1. Contribution of PES programs to climate change adaptation

- Lack of adaptation to climate risks in agriculture (Annan & Schlenker, 2015; Burke & Emerick, 2016; Falco et al., 2014; Ortiz-Bobea, 2021)
- "Green" (wetlands and forests) and "Grey" (levee and dams) infrastructures to manage flood risk (Bradt & Aldy, 2022; Karwowski, 2022; Kelly & Molina, 2023; Kousky & Walls, 2014; Taylor & Druckenmiller, 2022)
- Benefit-cost analysis of PES programs: environmental benefits and payments (Alix-Garcia & Wolff, 2014; Baylis et al., 2022; Claassen et al., 2018; Ferraro & Simpson, 2002; Fleming, 2017; Lichtenberg, 2021; Mezzatesta et al., 2013)

2. Financial spillover effects to existing risk management programs

Crop insurance impact on land use and environmental outcomes (Claassen et al., 2017; Connor et al., 2021; DeLay, 2019; Feng et al., 2013; Horowitz & Lichtenberg, 1993; Miao et al., 2016; Wu, 1999; Yu et al., 2022)

Conservation Reserve Enhancement Program (CREP)

- Aims to address **national environmental concerns** since 1998
 - Water pollution in the Gulf of Mexico
 - Declining wildlife habitat
- Offers payments to restore vegetative buffers and wetlands for 10-20 years
 - Co-benefits: regional flood risk mitigation (Karwowski, 2022; Kousky & Walls, 2014; Taylor & Druckenmiller, 2022)

Opportunity to evaluate the loss mitigation benefits of PES programs

- 1. National environmental concerns rather than trend in historical crop losses
 - Reverse causality
- 2. **Staggered program roll-out** across counties within the same state • Neighboring untreated counties
- 3. Little incentive to **manipulate** crop damage
 - Anticipation effects
- 4. Long-term **landscape changes** that mitigate flood risk
 - Strong first stage impact

Background 00 Empirical Framework 00000

Results 00000000000 Conclusion 00

Data

- **Population:** Major crop production region with flood risk in the U.S.
- Sample: Balanced county-by-year panel data; 384 counties 1989-2022
 - Heartland and Mississippi River Portal regions; 13 states
- **Policy:** Staggered introduction of CREP 1998-2011; 243 counties in 11 states Source: USDA-Farm Service Agency
- Outcome: Extent of flood damage on cropland 1989-2022
 Disaster/Indemnity payouts per flooded acre for 8 major cash crops Source: USDA-Risk Management Agency
- Covariates: Precipitation and growing degree days 1989-1997 • Post-harvest (Oct-Mar) and crop growing (Apr-Sep) seasons

Source: Schlenker and Roberts (2009)

Introduction	Background	Empirical Framework	Results	Conclusio
0000	00	00000	00000000000	00

Timing variations of program availability and participation 1998-2022

Long-term changes in the regional landscape induced by CREP

• Invested \$440M to establish 280,000 acres of conservation practices

Youngho Kim (UMD)

PES Programs and Climate Change Adaptation

Introduction	Background	Empirical Framework	Results	Conclusion
0000	00	00000	00000000000	00

Divergence in flood damage on cropland after the first CREP in 1998

CREP Available: 243 counties from 11 states; N = 8262 CREP Not Available: 141 counties from 12 states; N = 4794

Empirical Framework

Synthetic control method to estimate the counterfactual crop loss

- Estimand: **post-policy** average crop loss that CREP-available counties would have experienced in the **absence** of the program
- Weighted combination of untreated counties with similar pre-policy trend in crop loss (Abadie, 2021; Arkhangelsky et al., 2021; Doudchenko & Imbens, 2016; Ferman & Pinto, 2021)
 - Partially pooled SCM with an intercept shift (Ben-Michael, Feller, Rothstein 2022)
 - Covariates: Weather conditions
- Weighted DID estimator (Arkhangelsky et al., 2021; Callaway & Sant'Anna, 2021; Chaisemartin & d'Haultfoeuille, 2020; Sun & Abraham, 2021)
 - Allows for program effect heterogeneity and timing variation of program adoption (Goodman-Bacon, 2021)
 - No anticipation and spillover effects
 - No time-varying confounding factors

Introduction	Background	Empirical Framework	Results	Conclusion
0000	00	00000	•00000000000	00

1. Synthetic control consists of neighboring untreated counties

Youngho Kim (UMD) PES Programs and Climate Change Adaptation

2A. Similar production conditions: precipitation

Unit of Obs.: County-by-Year

Num. of Obs.: 13056; 384 counties in year 1989-2022 (CREP Available 243, CREP Not Available 141)

Pre-outcome Avg.: CREP 1675, Synthetic Control 1673, Pre-Diff. = 2 Post-outcome Avg.: CREP 1724, Synthetic Control 1723, Post-Diff. = 1 Unit of Obs.: County-by-Year Num. of Obs.: 13056; 384 counties in year 1989-2022 (CREP Available 243, CREP Not Available 141)

Youngho Kim (UMD) PES Programs and Climate Change Adaptation

Pre-outcome Avg.: CREP 141, Synthetic Control 135, Pre-Diff. = 6 Post-outcome Avg.: CREP 183, Synthetic Control 176, Post-Diff. = 7 Unit of Obs.: County-by-Year Num. of Obs.: 13056; 384 counties in year 1989-2022 (CREP Available 243, CREP Not Available 141)

3B. Similar insurance adoption: loss coverage level

Unit of Obs.: County-by-Year

Num. of Obs.: 13056; 384 counties in year 1989-2022 (CREP Available 243, CREP Not Available 141)

Post-policy divergence in the extent of flood damage on cropland

Unit of Obs.: County-by-Year; Num. of Obs.: 13056

Placebo outcome: extent of loss due to decline in crop price

Post-outcome Avg.: CREP 59, Synthetic Control 62, Post-Diff. = -3 Unit of Obs.: County-by-Year Num. of Obs.: 13056; 384 counties in year 1989-2022 (CREP Available 243, CREP Not Available 141)

Introduction	Background	Empirical Framework	Results	Co
0000	00	00000	000000000000	00

The extent of damage on flooded acres decreased by 27%

• The number of flooded crop acres also decreased by 39% Youngho Kim (UMD) PES Programs and Climate Change Adaptation

Introduction	Background	Empirical Framework	Results	Conclusion
0000	00	00000	0000000000000	00

Persistent loss mitigation benefits of the PES program

20 / 25

• Confounding factors	
• Spatial distance	► Wt.Dist.
• Insurance adoption	AcreIns CovLev

Empirical Framework

- Weather conditions
- Enrollment in other conservation programs
- Placebo outcome: payouts due to decline in crop price

Results are robust to:

- Excluding outliers
- Diff. outcome measures (indemnity payouts per liability or insured acres) 0
- Diff. functional form (log or inverse hyperbolic sine) (Bellemare & Wichman, 2020) 0
- Persistent benefits after the first 11 years 0
- Excluding covariates
- Other weighted DID estimators 0

Falsification analysis

Spatial and temporal heterogeneity of the loss mitigation benefits

- Mechanism: Duration of program availability and participation extent +
- Interaction with the existing "Grey" infrastructure: leveed area –
- Interaction with crop insurance: Extent of crop insurance adoption +

• Little inter-county **spillover effects**

Introduction 0000 Background 00 Empirical Framework 00000 Results 000000000000 Conclusion 00

Caveats

1. Uninsured crop loss

 $\circ~82\%$ of eligible crop acre were insured from 2000 to 2021 (USDA-ERS)

2. Two different mechanisms of loss mitigation benefits

- Protection services from established natural infrastructure
- Removal of cropland under flood risk

3. Data limitations

- Previous land use (cropland vs pastureland)
- Annual payment only

PES programs contribute to climate change adaptation in agriculture

1. Persistent loss mitigation benefits

 $\circ~$ Protected 900,000 crop acres from flooding (3 flooded acres per acre of conservation practice)

2. Financial spillover effects to existing risk management programs

• Reduced \$73M in insurance payouts (\$170 per \$1,000 program payments)

Background 00 Empirical Framework 00000 Results 0000000000000 Conclusion $O \bullet$

- Questions: youngk@umd.edu
- Website: https://www.econyoungkim.com
- Webinar Slides and Recording will be available at: https://www.fsa.usda.gov/programs-and-services/ economic-and-policy-analysis/natural-resources-analysis/webinars/index
- USDA FSA Outreach: fsaoutreach@usda.gov

Trends in Non-CREP CRP: CREP vs. Synthetic Control

Pre-outcome Avg.: CREP 7314, Synthetic Control 10239, Pre-Diff. = -2925 Post-outcome Avg.: CREP 10418, Synthetic Control 14535, Post-Diff. = -4117 Unit of Obs.: County-by-Year Num. of Obs.: 13056; 384 counties in year 1989-2022 (CREP Available 243, CREP Not Available 141)

References I

Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. *Journal of Economic Literature*, 59, 391–425.

Alix-Garcia, J., & Wolff, H. (2014). Payment for ecosystem services from forests. Annual Review of Resource Economics, 6, 361–380.

Annan, F., & Schlenker, W. (2015). Federal crop insurance and the disincentive to adapt to extreme heat. The American Economic Review: Papers and Proceedings, 105, 262–266. http://www.jstor.org/stable/43821890

Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic difference-in-differences. American Economic Review, 111, 4088–4118.

Baylis, K., Coppess, J., Gramig, B. M., & Sachdeva, P. (2022). Agri-environmental programs in the united states and canada. *Review of Environmental Economics and Policy*, 16, 83–104.

Bellemare, M. F., & Wichman, C. J. (2020). Elasticities and the inverse hyperbolic sine transformation. Oxford Bulletin of Economics and Statistics, 82, 50–61.

Ben-Michael, E., Feller, A., & Rothstein, J. (2022). Synthetic controls with staggered adoption. Journal of the Royal Statistical Society Series B, Royal Statistical Society, 84, 351–381.

References II

- Bradt, J. T., & Aldy, J. E. (2022). Private benefits from public investment in climate adaptation and resilience.
- Burke, M., & Emerick, K. (2016). Adaptation to climate change: Evidence from us agriculture. American Economic Journal: Economic Policy, 8, 106–140.
- Callaway, B., & Sant'Anna, P. H. C. (2021). Difference-in-differences with

multiple time periods. Journal of Econometrics, 225, 200–230.

- Chaisemartin, C. D., & d'Haultfoeuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. American Economic Review, 110, 2964–2996.
- Claassen, R., Duquette, E. N., & Smith, D. J. (2018). Additionality in us agricultural conservation programs. Land Economics, 94, 19–35.
- Claassen, R., Langpap, C., & Wu, J. (2017). Impacts of federal crop insurance on land use and environmental quality. American Journal of Agricultural Economics, 99, 592–613. http://dx.doi.org/10.1093/ajae/aaw075
- Connor, L., Rejesus, R. M., & Yasar, M. (2021). Crop insurance participation and cover crop use: Evidence from indiana county-level data. *Applied Economic Perspectives and Policy.*
- DeLay, N. (2019). The impact of federal crop insurance on the conservation reserve program. Agricultural and Resource Economics Review, 48, 297–327.

References III

- Doudchenko, N., & Imbens, G. W. (2016). Balancing, regression, difference-in-differences and synthetic control methods: A synthesis. National Bureau of Economic Research.
- Falco, S. D., Adinolfi, F., Bozzola, M., & Capitanio, F. (2014). Crop insurance as a strategy for adapting to climate change. *Journal of Agricultural Economics*, 65, 485–504.
- Feng, H., Hennessy, D. A., & Miao, R. (2013). The effects of government payments on cropland acreage, conservation reserve program enrollment, and grassland conversion in the dakotas. *American Journal of Agricultural Economics*, 95, 412–418.
- Ferman, B., & Pinto, C. (2021). Synthetic controls with imperfect pretreatment fit. Quantitative Economics, 12, 1197–1221.
- Ferraro, P. J., & Simpson, R. D. (2002). The cost-effectiveness of conservation payments. Land Economics, 78, 339–353.
- Fleming, P. (2017). Agricultural cost sharing and water quality in the chesapeake bay: Estimating indirect effects of environmental payments. American Journal of Agricultural Economics, 99, 1208–1227.
- Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, 225, 254–277.

References IV

- Horowitz, J. K., & Lichtenberg, E. (1993). Insurance, moral hazard, and chemical use in agriculture. American Journal of Agricultural Economics, 75, 926–935. https://doi.org/10.2307/1243980
- Karwowski, N. (2022). Estimating the effect of easements on agricultural production. National Bureau of Economic Research.
- Kelly, D., & Molina, R. (2023). Adaptation infrastructure and its effects on property values in the face of climate risk.
- Kousky, C., & Walls, M. (2014). Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. *Ecological Economics*, 104, 119–128.
- Lichtenberg, E. (2021). Additionality in payment for ecosystem services programs: Agricultural conservation subsidies in maryland. *Land Economics*, 97, 305–320.
- Mezzatesta, M., Newburn, D. A., & Woodward, R. T. (2013). Additionality and the adoption of farm conservation practices. Land Economics, 89, 722–742.
- Miao, R., Feng, H., Hennessy, D. A., & Du, X. (2016). Assessing cost-effectiveness of the conservation reserve program (crp) and interactions between the crp and crop insurance. *Land Economics*, 92, 593–617.

References V

- Ortiz-Bobea, A. (2021). The empirical analysis of climate change impacts and adaptation in agriculture.
- Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to u.s. crop yields under climate change. Proceedings of the National Academy of Sciences, 106, 15594. http://www.pnas.org/content/106/37/15594.abstract
- Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225, 175–199.
- Taylor, C. A., & Druckenmiller, H. (2022). Wetlands, flooding, and the clean water act. American Economic Review, 112, 1334–1363.
- Wu, J. (1999). Crop insurance, acreage decisions, and nonpoint-source pollution. American Journal of Agricultural Economics, 81, 305–320. http://dx.doi.org/10.2307/1244583
- Yu, J., Goodrich, B., & Graven, A. (2022). Competing farm programs: Does the introduction of a risk management program reduce the enrollment in the conservation reserve program? *Journal of the Agricultural and Applied Economics Association*, 1, 320–333.