[image: image5.png][image: image6.png]
FSA Builds Overview


FSA Builds Overview
(15-minute Guide)
Version 1.0
AMC/AO

Prepared for

USDA Farm Service Agency

6501 Beacon Drive

Kansas City, MO 64133-4676

Table of Contents

31.
Introduction

1.1
Overview
3
2.
Non-Technical Overview
3
2.1
Builds
3
2.1.1
Build Definition
3
2.1.2
Dependencies and Dependency Versions
3
2.1.3
Maven
3
2.2
Testing
3
2.2.1
Unit Test
3
2.2.2
Integration Test
3
2.2.3
Code Coverage
4
2.3
Continuous Integration
4
2.3.1
Automated Builds
4
2.3.2
Continuous Integration
4
2.4
Putting It All Together
4
2.4.1
A Simple Scenario
4
2.4.2
The Reference Project
4
2.5
References
4
3.
Technical Overview
5
3.1
Introduction
5
3.2
The Big Picture
5
3.3
The Developer Experience
5
3.4
The Nightly Build
5
3.5
Technologies Overview
6
3.5.1
Maven
6
3.5.2
JUnit
6
3.5.3
Cactus
6
3.5.4
Nexus
7
3.5.5
Hudson
7
3.5.6
Cargo
8
3.5.7
Emma
8
3.5.8
XDoclet
8
3.6
Additional Resources/Links
8
1. 
 Introduction

This document provides a very high-level overview of the Farm Service Agency (FSA) build process and technologies.  Altogether, the aim of this guide is for the average developer to be able to read and assimilate its content in a setting of approximately fifteen minutes.  This document is located on the Build the System page on the SDLC Website.  
Additional build-related documentation is located at the Architecture Office (AO) Build Project’s SharePoint Website.
1.1 Overview
The overall philosophy for FSA builds entails the ability to:

· Automate builds to remove the potential for human error

· Formalize Source Code Management processes to ensure repeatability of builds

· Create an automated testing framework to increase Quality of Applications

· Use Quality Reports, providing transparency of an application’s condition to development leads and management.
2. Non-Technical Overview

This short overview provides a good starting point for anyone not familiar with build technologies in general, or wanting a very quick introduction to the FSA Builds.

2.1 Builds
2.1.1 Build Definition
In its simplest form, a build is the process of assembling an artifact such as a Java Archive (JAR), Web Application Archive (WAR), or Enterprise Archive (EAR) file.
2.1.2 Dependencies and Dependency Versions
In order to build a JAR, one typically needs other JARs in the classpath in order to compile the Java code.  This is the primary type of dependency, and is often called a “compile time” dependency.
It is a best practice to track the version number of each dependency used.  This improves stability and repeatability.

2.1.3 Maven
Maven is an industry standard tool used by the FSA to perform builds and provide dependency management.  Every artifact provides a file (pom.xml) declaring what type of artifact to build, as well as the exact dependencies needed in order to build.
2.2 Testing
2.2.1 Unit Test
FSA developers write unit tests to ensure their code works as expected.  These tests are Java Classes that extend from the JUnit TestCase class.  Methods such as “testTerritoryContractUpdate” or “testDateIncrement” will test specific pieces of code that map to use cases or requirements. 
Maven automatically runs all unit tests prior to building an artifact.  It also provides an HTML report describing the unit tests and any failures.

2.2.2 Integration Test

Much of the code that FSA developers write will either connect to a database, an Enterprise JavaBean (EJB), or Web service.  To test this type of code, the artifact (EAR or WAR) is first deployed to a lightweight Java Platform, Enterprise Edition (J2EE) server, such as JBoss. Then, the tests are run within that container.  Developers test complex scenarios and system interactions in this way.
On the other hand, Maven performs as-needed integration tests and integrates with other technologies (such as, JBoss and Cactus) to make this happen.

2.2.3 Code Coverage

A metric used to determine the quality of a unit or integration test is to check how much of the code is actually being tested.  For example, neglecting to write unit tests for alternate or exception code paths is very common.

The Emma code coverage tool runs unit or integration tests, and sees which code paths are actually exercised during those tests.  Maven kicks off Emma during the build, and Emma provides an HTML report of the code coverage results.
2.3 Continuous Integration

2.3.1 Automated Builds

To ensure that builds are stable and repeatable, the build process should not involve any manual steps.  For example, developers could use Maven to enter one command to kick off a clean build of all artifacts in a project.

2.3.2 Continuous Integration

Continuous integration takes automated builds to the next level by using a scheduler to perform complete builds of each artifact every night.  This provides timely feedback on any test or compilation errors.
FSA uses Hudson for continuous integration.  Hudson allows teams to schedule their nightly builds, as well as send out emails to managers with the results of those builds.  Trending reports are available to show how the quality of the builds changed over time.

2.4 Putting It All Together

2.4.1 A Simple Scenario

The following scenario depicts an FSA developer using the build process on any given day:
· Developer:

· Write Java code and unit tests.

· Run Maven locally. Verify that code compiles, its tests pass, and code coverage improves.

· Check code into source control.
· Hudson (runs at night):

· Checks out new code changes from source control.

· Kicks off a Maven build of the project, building HTML reports.

· Generates trending and aggregate reports. Sends an email to managers and developers.
2.4.2 The Reference Project

The Reference Project contains a simple web application with examples of all the mentioned technology.  It can be checked out from source control, and is built nightly on the Architecture Office Hudson instance.
2.5 References

· JUnit – http://www.junit.org
· Maven – http://maven.apache.org
· Emma – http://emma.sourceforge.net
· Hudson – https://hudson.dev.java.net
· Architecture Office Hudson instance - http://165.221.11.248:7135/hudson
· JBoss – http://www.jboss.org
· Cactus – http://jakarta.apache.org/cactus/index.html
3. Technical Overview

3.1 Introduction

The following is a ten-minute overview detailing the technologies used by FSA and how they are connected. 

3.2 The Big Picture

The following diagram captures the major components, interactions, and responsibilities:

[image: image1.emf]Hudson Build Servers

(Automated Processes)

Developer Workstation

(Manual Processes)

Maven/Hudson will...

·Checkout Code

·Tag/Baseline Releases

Developer will...

·Checkout Code

·Commit Code

Maven will...

·Download 

dependencies

Maven will...

·Download 

dependencies

·Deploy nightly 

snapshots

·Deploy releases

Developer Workstation

·Eclipse/RSA

·Maven/m2eclipse

·JBoss

Hudson Build Servers

(per Office)

·Hudson

·Maven

·JBoss

Clear Case

Nexus Server

and Admin Web App

Hudson will...

·Build testable 

EARs

·Deploy EARs to 

Jboss

·Run integration 

tests

·Generate Quality 

Reports/Emails

Developer will...

·Write tests

·Run applications 

on JBoss

·Run integration 

tests on JBoss


3.3 The Developer Experience

Using the FSA build system will impact the day-to-day development experience.  The most significant elements are:
· Eclipse/Rational Software Architect (RSA)
· The Architecture & Management Center (AMC) and Application Development Center (ADC) are recommending all developers use Eclipse instead of RSA.

· JUnit

· Write unit and integration tests.

· Write tests that cover a significant percentage of the code base.

· Maven

· Use one pom.xml file per project to capture dependencies and build configuration.

· The m2eclipse plugin integrates Maven capabilities with Eclipse.

· JBoss

· To demonstrate J2EE compliance, developers will ensure their application and integration tests can run on either JBoss or WebSphere.

· To run JUnit integration tests within JBoss, make use of the Cactus extension to JUnit.

3.4 The Nightly Build

The following diagram shows the high level flow of a Hudson nightly build for one project:
[image: image2.emf]
3.5 Technologies Overview

This section provides a high-level overview of the technologies used in the build process, followed by links for reference.  This is not exhaustive overview; extensive learning should take place by visiting the referenced Websites.

3.5.1 Maven

“Maven is a software project management and comprehension tool… Maven can manage a project's build, reporting and documentation from a central piece of information.” (maven.apache.org)
m2eclipse is an Eclipse plugin allowing the Maven pom.xml to maintain much of the project meta-data.  The most significant piece of this is that all dependencies are managed through the pom.xml rather than the .classpath file.

http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
http://maven.apache.org/
http://m2eclipse.codehaus.org/
3.5.2 JUnit

JUnit is the de facto framework for performing any type of test in Java.  Developers write unit tests to test small portions of isolated code, whereas, integration tests are written to test their use cases from end-to-end.

http://www.junit.org/
3.5.3 Cactus

Cactus is an extension to JUnit that allows one to write unit tests that will run on a server, while the unit test is being initiated from outside of the server.  The following picture (from the Cactus website) gives a very good overview of what this means:
[image: image3.png]
Translating to the FSA environment, the Client side of this diagram can be represented as Maven running unit tests as part of a build.  The Server side of the diagram can be represented as EARs deployed to JBoss as part of the FSA build.

http://jakarta.apache.org/cactus/images/archi.jpg
http://jakarta.apache.org/cactus/how_it_works.html
http://jakarta.apache.org/cactus/how_it_works_uml.html
3.5.4 Nexus

 “Nexus is a powerful and robust Maven repository manager, created to provide reliable access to artifacts required for development and provisioning … it has always been recommended to maintain your own repositories to ensure stability within your organization. Nexus greatly simplifies the maintenance of your own internal repositories… With Nexus you can completely control access to, and deployment of, every artifact in your organization from a single location.” (nexus.sonatype.org)
Nexus will house all approved Java third party dependencies, as well as all FSA application releases and snapshots.  At a high level, the FSA use of Nexus can be summed up in this diagram:


[image: image4.emf]Developer Workstation

Nexus Server

Download dependencies

Hudson Build Servers

Upload snapshots and releases


http://nexus.sonatype.org/
http://www.sonatype.com/books/nexus-book/reference/
3.5.5 Hudson

Hudson monitors executions of repeated jobs, such as building a software project.  Hudson focuses on building and testing software projects continuously, monitoring executions of externally-run jobs.  The section “The Nightly Build” provides a clear understanding of how the FSA uses Hudson.  Additional benefits include: 

· Office-level dashboard of the build status and stability of all projects

· Trending reports of build stability.
https://hudson.dev.java.net/
3.5.6 Cargo

The FSA uses Cargo as a plugin that allowing Maven to deploy EARs to JBoss, starting and stopping JBoss as part of an integration test.

http://cargo.codehaus.org/
http://cargo.codehaus.org/Maven2+plugin
3.5.7 Emma

“EMMA is an open-source toolkit for measuring and reporting Java code coverage…” (emma.sourceforge.net)
“Code coverage” refers to a software engineering technique whereby one tracks the quality and comprehensiveness of a test suite by determining simple metrics. For instance, the percentage of classes, methods, lines, etc. that were executed when the test suite ran.

EMMA has a Maven plugin, generating an HTML coverage report during each nightly build.  This is summarized as part of the quality email that is sent out.
http://emma.sourceforge.net/
http://mojo.codehaus.org/emma-maven-plugin/
3.5.8 XDoclet

“XDoclet is an open source code generation engine [that uses] special JavaDoc tags.  XDoclet will parse [the JavaDocs in] your source files and generates many artifacts such as XML descriptors and/or source code.” (xdoclet.sourceforge.net)
The FSA uses XDoclet to generate IBM/WebSphere binding files, JBoss configuration files, and Reference Architecture Business Delegates.

http://xdoclet.sourceforge.net/xdoclet/index.html
http://xdoclet.sourceforge.net/xdoclet/tags/ejb-tags.html
http://xdoclet.sourceforge.net/xdoclet/tags/web-tags.html
http://xdoclet.sourceforge.net/xdoclet/tags/jboss-tags.html
http://xdoclet.sourceforge.net/xdoclet/tags/ibm-tags.html
3.6 Additional Resources/Links

http://martinfowler.com/articles/continuousIntegration.html
Feb 20, 2009

Page 1 of 8

[image: image5.png][image: image6.png]_1297232487.vsd
�

�

�


_1301916331.vsd
�

�

�


_1103713830.doc
[image: image1.png]


