[image: image3.png]

 [image: image4.jpg]

Code Review Guidelines
Farm Service Agency
 DOCPROPERTY Subject * MERGEFORMAT
Prepared for

USDA Farm Service Agency

6501 Beacon Drive

Kansas City, MO 64133-4676
File Name: FSA Code Review Guidelines.doc

Table of Contents
31.
Introduction

2.
Code Review Procedures
3
2.1
Peer Check-In
3
2.2
Individual Code Review / Audit
3
2.3
Conference Room Code Review
4
3.
Accountability / Gates
4
4.
What to Look For
4
4.1
Organizational Standards Compliance
4
4.2
Application Security
4
4.3
Automated Testing
5
4.4
Automated Build / Build Scripting
5
4.5
Performance Best Practices
5
4.6
Maintainability Best Practices
5
4.7
Software Documentation
5
5.
Code Review Artifacts
5
5.1
Documentation of Issues
6
5.2
Code Review Checklist
6
6.
Revision History
6

 SUBJECT * MERGEFORMAT Code Review Guidelines
1. Introduction
Automated testing and build tools help foster code consistency and quality, and when used in conjunction with manual code reviews the likelihood of high quality code increases dramatically. Automated build and testing tools (such as PMD) can remove a significant amount of the trivial issues often found in code reviews, allowing reviewers to focus on the more complex and possibly less obvious issues (the reviews may also refer to the generated reports like PMD or Code Coverage as part of the code review). This document describes some suggested guidelines for performing code reviews. Developers are encouraged to provide feedback and/or propose alternatives to these guidelines.
This document shall not override standards set by the Architecture Office (AO) or the Farm Service Agency (FSA) Application Architect. The guidelines contained herein refine and extend FSA standards.
2. Code Review Procedures
How code reviews are completed is not as important as ensuring the code review is being completed. There are a variety of code review formats; teams may feel free to pick a format, a combination of formats, or to create their own. This section describes several alternatives, in order of preference.
Peer Check-In

The peer check-in alternative is highly recommended. In the peer check-in, the team establishes a process where no developer may check in code before it has been reviewed by a teammate. Essentially, whenever a developer is ready to check in code, he/she finds a team member, asks them to come to their desk, and walks them through the code changes he/she has made. When checking in the code, the developer notes the initials of the reviewer team member. The pros and cons of this approach are as follows:
· PRO – Using this approach, all code is frequently and reliably reviewed.
· PRO – Check-ins are generally done in smaller pieces and more frequently. This is also a revision control best practice, that helps reduce the chance of a code reviews becoming cumbersome because of the size of the code base being reviewed.
· PRO – This process promotes knowledge sharing and reduces single points of failure in a team.
· PRO – This approach works equally well with small and large teams, with no single point bottleneck.

· CON – It may sometimes be difficult to locate a team member available to review code prior to check-in, particularly when team members are working late or on weekends.
· CON – There is an initial culture that needs to be established to support this approach, and if complete team buy-in is not received, the process fails.
Individual Code Review / Audit

The individual code review/audit alternative is recommended, if the peer check-in approach is not used. This technique involves one or more individuals assigned to review a developer’s code or some functional module of the application. These reviewers are tasked with individually inspecting the code, at their convenience. Any issues noted are communicated to the team members that are expected to resolve them. The pros and cons of this approach are as follows:

· PRO – This approach can be done on a time-available basis, having less impact on the team’s other tasks.
· CON – This form of code review may not be made a high priority, hence not being completed in a timely manner. This may result in the review being too late in the project to make the necessary changes.
· CON – This approach does not scale well and is more suited for smaller development teams.
Conference Room Code Review
The conference room code review is the more traditional alternative. It is also the least recommended option. In the conference room code review approach, the developer sends out 24 hour notification prior to a scheduled time for the code review. In the meantime, the team individually reviews the code and notes any issues they find. Then, at the scheduled time, the code is displayed on a projector (or handed out on paper) while the team talks through the code and any issues, determining prospective resolutions and strategies. The pros and cons of this approach are as follows:
· PRO – The entire team is involved in the code review, providing a format for knowledge transfer.
· CON – Some members of the team may not actively contribute to the code review, either individually or in the team session.
· CON – It can sometimes be difficult to follow the code in a group session, unless the entire team is provided with laptop computers.
· CON – Teams may get bogged down in trivial issues or easily sidetracked.

· CON – Developers may feel “under attack” when issues are found in their code, and as a result these can sometimes devolve quickly into personal attacks rather than constructive criticism.

3. Accountability / Gates

Code reviews often get delayed until the last minute. This is also the time when teams are working their hardest to meet a deadline, often making it too late to make major changes that might be discovered in a code review. Because of this, it is critical that code reviews be completed early and often. It is recommended that teams establish gates at various project phases (for instance in an agile team, it would make sense to have a mini-code review prior to the end of each sprint). Teams will be accountable for:

· completing code reviews and mitigating all noted issues

· documenting code reviews and all issues found

· storing this documentation along with their other SDLC related project artifacts.
4. What to Look For

This section provides suggestions on common problems to look for in a code review. Reviewers are expected to use their own unique judgment, knowledge, experience, and expertise while performing code reviews. Automated tools are available both to help conduct source code review as well as runtime scans for testing and deployment. This section focuses on Java applications, but the same general suggestions apply to other languages as well.

Organizational Standards Compliance

· The application shall comply with all published information bulletins.
· A waiver of non-compliant requirements shall be on file and active.
· The application shall comply with all standards and requirements published on the FSA System Development Life Cycle (SDLC) Web site (http://www.fsa.usda.gov/sdlc).
· The application shall comply with an internal office or team’s standards and requirements.
Application Security

· Prepared statements shall be used properly for all data access to prevent SQL injection.
· All HTML output shall be properly escaped to prevent cross-site scripting. A comprehensive and consistent input validation and output encoding approach should be indicated in the source.
· iframe tags should be limited or not used. All access to the application shall be properly secured with appropriate user roles and authentication.
· Any developer “back-doors” that may have been used for testing shall be removed before deploying to production.
Automated Testing

· Automated testing should be taken advantage of by the application.
· Code coverage should be adequate, at least 80% expected.
· Tests should be relevant to the business processes and outputs should be validated as completely as possible. Adding appropriate post condition checks is a fundamental part of an automated test; tests should not be limited to “AssertNotNull” validations.
Automated Build / Build Scripting

· The application should take advantage of build scripting in order to create repeatable, stable builds of the application (regardless of whose machine the build is performed on). For more information on the automated build process at the FSA, contact the Architecture Office.
Performance Best Practices

· The application should use StringBuilder appropriately when concatenating potentially large strings or in performance critical areas of code (i.e. – building XML responses or MQ message records).
· The application should make optimal use of the database by avoiding unnecessary repetitive calls to the database (often called the n+1 problem).
· The application should take advantage of stored procedures where appropriate.
· The application should take advantage of batch JDBC where appropriate.
· The application should avoid excessive object creation when possible, but not at the expense of code clarity in sections of code that are not performance critical.

Maintainability Best Practices

· The application should not use a custom-built framework or utility classes where widely-used, open source or common solutions exist, for example the OWASP ESAPI efforts.
· Applications should be as simple as possible.
· Complex algorithms should be documented well or simplified as much as possible.
Software Documentation

· The application should have an up-to-date developer’s guide describing where to find the source, how to set up a workspace, build the application, deploy to integration and CERT, etc.
5. Code Review Artifacts
The following templates are examples of what can be used for code review documentation. Teams are not required to use these examples, provided issues are being tracked through another means. Documentation possibilities include:
· ClearCase.
· Excel or Word format.
· Inline comments with a standard tag, such as “@CRV”. Eclipse can be configured to detect and report on these.
· Any other system for tracking these types of issues (such as Bugzilla or SharePoint).
Documentation of Issues

The following spreadsheet is an example format that can be used:

 [image: image1.emf]PriorityCategoryClassLineIssueResolution

SevereSecuritygov.usda.fsa.foo.Application124SQL injection vulnerability

Code Review Checklist

The following checklist, especially when guided by a threat model, could help to ensure that code reviewers are looking for the right problems and tracking issues. Additionally, a categorization of vulnerabilities such as the Fortify vulncat or the OWASP categorization methodology may also be useful to encourage a comprehensive approach.
	Project
	XXX

	Review Item
	Reviewer

(initials)
	Issues Found?

(yes/no)

	Compliance with internal office/team standards.
	
	

	Compliance with SDLC standards.
	
	

	Compliance with all published Information Bulletins.
	
	

	SQL injection vulnerabilities.
	
	

	Input validation vulnerabilities.
	
	

	Output encoding vulnerabilities
	
	

	Utilizes eAuth or EAS appropriately.
	
	

	Uses automated tests.
	
	

	Automated tests are testing appropriate conditions.
	
	

	The database is being used efficiently.
	
	

	Developer guide is accurate and complete.
	
	

6. Revision History

	Version
	Date
	Summary of Changes
	Author

	1.0
	4/28/09
	New document
	Sean Blaes / Daniel Moler

	1.1
	5/6/2009
	Very minor changes
	Matthew Stropes

	1.2
	1/26/2010
	Added information in sections 4, 4.2, 4.6 and 5.2
	Mat Caughron

[image: image2.png]
Code Review Guidelines
Page 2 of 6

January 26, 2010
Code Review Guidelines
Page 1 of 6

January 26, 2010

[image: image3.png][image: image4.jpg][image: image5.png][image: image6.jpg]