Price Volatility in US Dairy Markets

Andrew M. Novakovic, PhD
Charles Nicholson, PhD
Mark Stephenson, PhD
What Are the Challenges and Issues with Respect to Price (or Margins)?

Three Very Different Characteristics of Price

Uncertainty/Certainty (or predictability) - good, bad or otherwise, to what degree can I predict what the price will be?

Instability/Stability - good, bad or otherwise, prices do/don’t change much from one month to the next
  - Perfectly stable implies certainty, but certainty does not imply stable

Inadequacy/Adequacy - stable or not, prices are enough to cover my costs and yield a profit
Some Basic Questions about Price Volatility

Does it exist?
How much is it?
Is it a problem?
In what way is it a problem?
For whom is it a problem?
What can be done about it?
  – To treat the symptoms or to treat the cause
  – Public solutions vs private solutions
  – Existing tools or new tools?
Summary of Industry Opinions

Volatility is an important issue

- Not as big an issue as adequacy (but somewhat inseparable)
- Has become a bigger problem over time and is substantial or unbearable for many

The policy response to volatility?

- Majority say firms should manage their own risk
- 43% say a policy response is appropriate
Long Term Trends that Determine the Price of Milk Over Decades
Milk production per cow has shown a persistent and highly linear upward trend over the last 100 years. Prior to 1953, it increased at a trend rate of only 39 lbs/yr. Since then it is 271 lbs/yr.

The downturns of 1973 and 2001 were small and came at a time huge feed price increases relative to milk price, and 1984, which was larger, can be attributed to the Milk Diversion Program. The year to year change has been a bit more erratic since the mid-1970s.

Since 1953, US annual milk production per cow, adjusted for leap year, has increased 269 pounds per year, on average, with a trend rate of 271.2 pounds per year. It has done so with almost perfect, linear consistency.
Commercial Disappearance of milk closely parallels population growth. Per capita is growing slightly too. Exports (foreign demand) will become a more important driver in the future (kind of a new population effect).


(data are adjusted for leap year)
Concluding Comments: Trend

Trend is no longer particularly interesting from a practical standpoint, although it remains economically important.

- Milk price trends are driven by linear trends in productivity and population.
- Productivity has grown more quickly than population.
- Thus, farm milk prices increase at a lower rate than inflation or declining “real” farm milk prices.

Only when feed prices are very high relative to milk, do farmers make management decisions about yield that are short term. Otherwise, the key decision is “how many cows”.

Comparison of US Population vs Milk Production Per Cow Trends, Index 1982-84 = 100

![Graph showing comparison of US Population vs Milk Production Per Cow Trends, Index 1982-84 = 100](image-url)
What’s Happened to Milk Prices: A shorter run view

Seasons and Cycles
How Big is the Problem? How to Measure Volatility?

Range - minimum to maximum

Do we only care about the minimum?

Frequency Distribution or Interquartile Range - measures how prices are distributed in between the top and bottom

Variance or Standard Deviation - measures of dispersion relative to a mean or average

Coefficient of Variation - useful in comparing the deviation of two distributions that have markedly different means

And a number of other more complex measures

Does it matter how we measure volatility? Don’t all measures indicate the same thing, more or less?
Which is More Variable?

Class III Price, 1988-2008

- Range = $12.81
- IQR = $2.745
- Variance = $5.679
- Std Dev = $2.383
- Coef. of Var = 0.189

Class III Prices for 1988-2008 reordered from lowest to highest

- Range = $12.81
- IQR = $2.745
- Variance = $5.679
- Std Dev = $2.383
- Coef. of Var = 0.189
What Alternatives are Available to Measure Variability?

There are other econometric or statistical tools available to measure the frequency of changes, as opposed to the magnitude of changes.

Let’s look at two

1. As simple counting of how many times the price rises over a period of months
2. A more complex formula used in finance and engineering to measure volatility
Ranking Volatility in Dairy Prices Using These Two Measures

Volatility Rank:
1. Class Prices
2. Wholesale Prices
3. Retail Prices
4. Farm Prices

If we look at Sum Ups, Farm and Retail are comparable. Farm is less using B-S.

Retailers change prices less frequently, but do not exhibit less volatility.
What Have We Learned From a Larger Study of Dairy Prices?

Volatility is highest in the middle of the marketing chain—product and product formula prices

- Wholesale Butter and Cheese prices are very volatile.
- Nonfat dry milk wholesale prices have not been volatile.
- Cheese prices are the most volatile retail dairy prices
- Beverage milk and butter prices are not volatile and these are highly explained by trend

Volatility is somewhat muted or altered at the farm and retail levels
What Have We Learned From a Larger Study of Dairy Prices?

Different measures of farm level prices exhibit different degrees of volatility

- The price that plants pay (All Milk), including premiums, is less volatile than the price farmers receive (Mailbox)
  - Farm marketing costs are less volatile than the pay price
- The regulated minimum farm price (Blend) is more volatile than either the All Milk and the Mailbox prices
  - Processors tend to smooth price fluctuations by changing premiums

Federal Order minimum classes, assigned to processors of four different categories of dairy products, exhibit different price volatility

- Class I (fluid) and Class III (cheese) are by far the most volatile
- Class IV (butter and nonfat dry milk) is the least

There are regional differences in farm/plant price volatility

- Florida (which is dominated by fluid milk - Class I) has by far the most volatile prices
- Northeastern states, like New York, having a balance across class utilizations are less volatile
What is Variability in Dairy vs Beef or Corn? (plenty!)

National Average Monthly Prices Received by Farms for Corn, Beef, and Milk

Price Index, 1982-84 = 100
Comparative Measures of Price Volatility for Milk, Corn, and Cattle, Black-Sholes vs Standard Deviation

Mean and Dispersion Statistics for US Monthly Prices Received for Beef, Corn, and Milk, 1970-2009

Using either measure, only cattle prices have reduced “volatility” after 1990 compared to 1970-80.

However, using SD, milk is more like cattle in both time periods.

Whereas when measured by B/S, cattle is like corn in the 1970s and milk matches corn after 1990.
Let’s look at “volatility” in the US Average Price for All Milk

Figure 1. U.S. Average Monthly Price for All Grades of Farm Milk, 1910 to 2010
(not adjusted for inflation)

The chart suggests that this price has become more volatile, has fluctuated, more since about 1990 than at any other time.

Can we quantify this volatility? Can we characterize it? To what extent is it random? To what extent is it systematic?
More than one kind of pattern though

Milk prices have several different patterns

- Trend in annual averages
- Seasonality in monthly prices
- Cyclical behavior in annual or monthly prices

Causes of patterns are understood to varying degrees

- Price trend responds to long term trends in production and consumption
- Seasonal patterns reflect in large part the seasonal differences in milk production vs milk needs
- Cyclical behavior is new
  - Complicates the seasonal pattern
  - Has causes that are not well known or understood
Traditionally, average milk prices to farmers had a distinct seasonal pattern, rising in the fall and declining in the spring.
The severe reduction in the Support Price for Milk by the end of the 1980s resulted in more erratic price behavior, however, the seasonal pattern remained dominant in the 1990s.
Prices are much more erratic since 2000.
Normalized average seasonal price patterns for four time periods since 1970 indicate that there is still an underlying seasonality.

Seasonal Indices of Monthly All Milk Prices, Monthly Price Average Relative to Average for All Months

Note shift in seasonal low/high from JUN/NOV to FEB/SEP
12-Month Rolling Average Reveals What Looks Like a New Cyclical Pattern in the Class III Price, beginning in mid-1990s

Class III Prices, Monthly vs Rolling Average

- Monthly Price
- 12-month rolling average
- Annual Average

Jan-69 to Jan-05
Identifying and Measuring Milk Price Cycles Using Time Series Analysis - Suppose we have a data series that looks like:

Sum of three underlying series, each with different characteristics
Consider the All Milk Price

Are there systematic patterns in this data?

Do the patterns differ over time?

• Intensify or dampen
• Change length
• Become more erratic (random)
Relative Variability over time, percent change from one month to the next

Current variability is of similar magnitude to early 20th century – but less predictable?

What middle-aged people remember about the way milk prices are supposed to be!
Analyze Two Time Periods

1948 to 1967 1988 to 2007

Look for:
- Level (average)
- Trend (slope)
- Cycles
- Seasonal (typically, annual)
- “Irregular”
Closer View of 2 Series

1948-1967

1988-2007
Frequency Components, 1948 to 1967

Seasonal is by far the strongest effect

$0.80/\text{cwt}$ variation
Frequency Components, 1988 to 2007

- Seasonal is same size, but
- Other cycles dominate

$6 per cwt variation. Amplitude of cycles increasing.
Key Results of Spectral Analysis

Dominant components vary
- Seasonal component dominates 1948-67

Several Cycles in 1988-2007
- Triennial, 36-month cycle - large and exploding
- Biennial, 26-month cycle - quite large and exploding?
- Annual, 12-month cycle - smaller, erratic
- 9-month cycle - small and stable

Variation much larger 1988-2007
- Model explanatory power the same for both
The analysis was recently extended

• More recent data
• More variables
• Questions
  ➔ Are there similar patterns in other dairy prices?
  ➔ Are there similar patterns in other dairy variables (production, stocks, sales)?
  ➔ Can we begin to discern causes and effects?
Daily Milk Production

Seasonal and cyclical components

Seasonal pattern dominates

Next largest component has 34-month cycle
Milk-Feed Price Ratio

Seasonal and cyclical components also important

77-Month Cycle

33-Month Cycle
Cheese Price

Seasonal and components also important

![Graph showing price fluctuations with labels for 9-month and 36-month cycles.](image)
Commercial American Cheese Stocks
Summary of Results - Estimated Cycle Lengths (all series showed trend and seasonal patterns too)

<table>
<thead>
<tr>
<th>Variable</th>
<th>&lt; 1 year</th>
<th>1-2 years</th>
<th>3 years</th>
<th>Longer</th>
<th>Really Long</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommOIL NDM Stocks</td>
<td>11</td>
<td>11</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk-Feed Price</td>
<td>10</td>
<td></td>
<td>33</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Daily Milk Production</td>
<td></td>
<td>34</td>
<td>64</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>NDM Price</td>
<td>9</td>
<td>13</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class IV price</td>
<td>10</td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Milk Price</td>
<td>10</td>
<td>17</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheese Price</td>
<td>9</td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butter Price</td>
<td>10</td>
<td>17</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class III Price</td>
<td>9</td>
<td>28</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CommOIL Cheese Stocks</td>
<td>6</td>
<td>16</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CommOIL Butter Stocks</td>
<td>9</td>
<td>12</td>
<td>44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Size or Strength of Patterns

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range of Level Effect</th>
<th>Amplitude of Seasonal Effect</th>
<th>Largest Amplitude Cycle</th>
<th>Amplitude of Largest Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Milk Price</td>
<td>$3.00/cwt</td>
<td>$1.00/cwt</td>
<td>36-month</td>
<td>$9.00/cwt</td>
</tr>
<tr>
<td>Daily Milk Production</td>
<td>235 mil lbs</td>
<td>40 mil lbs</td>
<td>34-month</td>
<td>10 mil lbs</td>
</tr>
<tr>
<td>Milk-Feed Price</td>
<td>1.2</td>
<td>0.5</td>
<td>33-month</td>
<td>1.0</td>
</tr>
<tr>
<td>Cheese Price</td>
<td>$0.30/lb</td>
<td>$0.20/cwt</td>
<td>36-month</td>
<td>$0.80/lb</td>
</tr>
<tr>
<td>Whey Price*</td>
<td>$0.50/lb</td>
<td>$0.05/lb</td>
<td>34-month</td>
<td>$0.09/lb</td>
</tr>
<tr>
<td>Class III Price</td>
<td>$4.00/cwt</td>
<td>$1.60/cwt</td>
<td>37-month</td>
<td>$8.00/cwt</td>
</tr>
<tr>
<td>NDM Price</td>
<td>$0.65</td>
<td>$0.10/lb</td>
<td>34-month</td>
<td>$0.70/cwt</td>
</tr>
<tr>
<td>Butter Price</td>
<td>$0.75</td>
<td>$0.20/lb</td>
<td>36-month</td>
<td>$0.70/lb</td>
</tr>
<tr>
<td>Class IV</td>
<td>$4.00/cwt</td>
<td>$2.00/cwt</td>
<td>34-month</td>
<td>$8.50/cwt</td>
</tr>
</tbody>
</table>

*Since 2000

Cyclical component is large relative to range and(or) seasonal

Rough convergence of periods of largest cycles
Concluding Comments: Seasonality

Seasonality is less obvious but remains a distinct element of US price patterns.

- Farm milk prices have a distinct seasonal pattern, with lows in the early spring and highs in the fall.
- The seasonal nadir and zenith of milk prices has shifted as milk production has moved to the Southwest.
- New cycles obscure seasonal component.

Seasonal Indices of Monthly All Milk Prices, Monthly Price Average Relative to Average for All Months

- 1970-2009
- 1970-83
- 1984-89
- 1990-97
- 1998-2009

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Concluding Comments: Cycles

Longer-period cycles have become defining feature in last 20 years

- Question: Why?
- Beef and other agricultural sectors show cycles related to price-induced expansion and contraction in capital assets, is that it for dairy
- What role does dairy demand play?
- Has expanding role of world trade increased volatility? (contrary to economic theory?)
- Increased volatility is consistent with results from other dynamic economic modeling work at Cornell that incorporates elements of market behavior and psychology (can we learn our way out of this?)

Farm Milk prices are now among the most volatile in US agriculture
Milk Production and Prices

Although seasonal fluctuations in milk production are larger, cyclical deviations from trend and season appear highly correlated with milk price cycles

- With delays (not in perfect phase)
- 34-month cycle

Does this suggest that much of the variation arises from production deviations?

- Maybe/likely
- More formal work to be done, other factors
What can/could be done?

Existing Policy or Public Tools -

- Federal Milk Marketing Orders
- Dairy Price Supports
- Milk Income Loss Contracts
- Something old? (Dairy Termination Program, Marketing Agreements)
- Something new? (Growth Management, Margin Insurance)

Private or Collective/Cooperative Tools -

- Hedging (outputs, inputs, options, etc)
- Insurance (LGM-D, FSA)
- Contracting (price and quantity specified forward contracts)
- CWT
Cornell Program on Dairy Markets and Policy

For more information or a copy of this presentation: http://www.dairy.cornell.edu

Andrew M. Novakovic, PhD
Professor and Program Director, amn3@cornell.edu

Mark W. Stephenson, PhD
Senior Extension Associate, mws5@cornell.edu

Charles F. Nicholson, PhD
Adjunct Associate Professor

Robert D. Boynton, PhD
Adjunct Professor