[image: image3.png][image: image4.png][image: image5.png]
Common Business Services RetrieveFmHAStateList ByStateFIPSCode
Implementation Guide

[image: image6.png]
[image: image7.png][image: image3.png][image: image4.png]

ECP Development Guide DOCPROPERTY Subject * MERGEFORMAT

Table of Contents

21.
Introduction

2.
Development Environment Setup
2
2.1
Software Distribution Setup
2
2.2
Obtaining Source Code
2
2.3
Eclipse Setup
2
2.3.1
JBoss Integration
2
2.3.2
Project Source Code
2
3.
Building/Running/Debugging ECP
2
3.1
Building ECP
2
3.2
Running ECP
2
3.3
Debugging ECP
2
3.4
SHAM Integration
2
4.
Eclipse Projects
2
4.1
ECP-WAR
2
4.2
ECP-Services
2
4.3
ECP-EAR
2
4.4
ECP-Build
2
4.5
ECPTestWeb
2
4.6
ECPTestEAR
2
5.
Development Process
2
5.1
Adding a new JSP
2
5.2
Adding a new Business Service
2
5.3
Adding a new Persistence Service
2
5.4
Reporting
2
6.
Testing Procedures
2
6.1
Automated Testing Setup
2
6.2
Creating Test Cases
2
6.3
Executing Test Scripts
2
6.4
Viewing Testing Results
2
7.
Diagnostics
2
8.
External System Interfaces
2
8.1
SCIMS
2
8.2
Farm Records
2
8.3
CBS/MRT
2

1. Introduction

This document contains information about how to setup the development environment for the ECP Application. It will discuss the ECP Projects within the development environment and basic examples of development standards and processes. Please note that the CAF 03.001 Implementation Guide and Conservation Implementation Standard v1.2 must be followed at all times.
2. Development Environment Setup
The ECP Projects will use the Software Distribution package. The official version is located at:
K:\Documents\ADPO\Common Jar Files\Eclipse\CommonDist
A modified version that includes the ECP JBoss Server setup is located at:

I:\PSCAO-Internal\CSSG\ECP\Development\softwaredistribution.zip
2.1 Software Distribution Setup
The first step in the development environment setup is to install the Software Distribution.
· Copy the Zip file above to your local c: drive
· Unzip the file – this will create directory c:\softwaredistribution

· Make note of the following directories:

· C:\softwaredistribution\eclipse – location of Eclipse IDE

· C:\softwaredistribution\jboss-4.2.2.GA – location of JBoss Server

· C:\softwaredistribution\jboss-4.2.2.GA\server\ecp – location of ECP Server install (this is where the EAR file will be deployed)

· C:\softwaredistribution\jboss-4.2.2.GA\server\ecp\log – location of log4j logs

2.2 Obtaining Source Code

The next step is to obtain the source code from the ClearCase repository.

· Click Start -> Programs -> Rational Software -> Rational ClearCase -> Project Explorer

· Expand SRM-SoftwareDevPV -> CONSERVATION-Projects -> ECP_ML -> ECP_ML_Int

· Right mouse click on current development view (as of this writing, ECP_ML_dev3) and click Create View

· Uncheck the “Create an integration view” checkbox

· Make sure “Create a development view” option has “Snapshot” selected

· Click next -> next -> finish -> OK

· Your view should be created with the current version of ECP source code

2.3 Eclipse Setup
The next step in the development setup is to create a shortcut to start the Eclipse IDE and configure Eclipse to point to the JBoss ECP Server install.

· Create a desktop shortcut to: c:\softwaredistribution\eclipse\eclipse.exe

· Double click to start Eclipse and accept the default workspace

2.3.1 JBoss Integration

There are 2 steps to integrate JBoss with Eclipse, configure the Jave Runtime Environment and Configure the ECP Server Install.

· In Eclipse – select window -> preferences

· Expand Java -> Installed JREs

· Click Add and create a new JRE called “J2SE_50” and point to JRE Home Directory c:\softwaredistribution\Sun\SDK\jdk

· Check the checkbox next to the “J2SE_50”, then click the other JREs listed and click Remove, click OK and you are done.

· Open the Server view by clicking Window -> Show View -> servers

· Within the Server window, right click -> new -> server

· Select JBoss v4.2 and next

· Change the Port to 9081 -> next -> finish
· Right click on the new server and click open

· In the Server Configuration field, type “ecp” -> then click the X box to save and close

· Right Click on the server again and click start -> verify no errors in the Console -> right click again and stop

2.3.2 Project Source Code
This section will describe how to import the ECP Project source code and projects into Eclipse.
· Open the Eclipse IDE

· Click File -> Import -> General -> Existing Projects into Workspace

· Browse for the Root Directory and point to C:\views\ECP_ML_dev3\SRM-SoftwareDevCV\ECP
· This should list 4 projects -> Click finish

· If you are using any non-standard directories (or if you are having issues with classes not found that are in common jars) do the following:

· Right mouse click on ecp-web and select properties

· Select Java Build Path -> libraries

· Remove any libraries that have bad paths

· Click Add Jars and expand ECPEAR and select libraries to add to classpath
3. Building/Running/Debugging ECP
The following sections will describe how to build ECP, run ECP from within Eclipse and how to Debug using the Eclipse debugger.
3.1 Building ECP

The ECP project will be built into an EAR deployable module using Ant. The output of building with Ant will be placed in the JBoss deploy directory for the ECP Server. The first thing to be done is to set the global variables to know about your specific environment.

· With Eclipse started and the ECPBuild project expanded, double click the local.properties file to edit

· ecp.view.root.dir should be set to the location that you checked out the source code to your local drive in Section 2.2

· softwaredistribution.dir should be set to the location you unzipped the Software Distribution file in Section 2.1

· Save the local.properties file

Eclipse comes with Ant support built in. Next, we tell Eclipse how to build the ECP Application.

· With Eclipse started, click Window -> Show View -> Other -> Expand the Ant Section, select Ant and OK

· In the new Ant window, right mouse click and select Add Buildfiles

· Expand ECPBuild and select build.xml and OK

· To Build ECP, simply right click on ECP -> Run As -> Ant Build or click the Green Arrow at the top of the Ant window

· Note any errors in the Console

3.2 Running ECP

Since the output of building ECP with Ant is placed in the JBoss deploy directory for the ECP Server, all that needs to be done is to start JBoss. In Section 2.3.1 JBoss Integration, we tested starting and stopping the JBoss Server, however, our current compilation of ECP was not deployed. Now that we have build the ECP Application with Ant, we can start the ECP Server.

· Within the Server window, right mouse click on JBoss 4.2 and select Start.

· Note any errors in the console window

· To stop, right mouse click on JBoss 4.2 and select Stop.

· Note that you can also use the Green Arrow and Red Box to start/stop from within the Server window

3.3 Debugging ECP

With the JBoss and Eclipse integration, this allows us to step thru our code line by line for debugging purposes.
· Open the Java file you would like to step thru

· Double click on the blue column on the left side of the line of code you would like to set a break point at -> a circle should appear noting the break point is set (double click again to remove)

· Within the Server window, right mouse click on JBoss 4.2 and select Debug, you can also click the bug icon shortcut

· The server should start and should continue until a break point is reached

· If Eclipse prompts that the Debug Perspective should be opened, select Yes
· You can use the icons or shortcuts to step in, out, or over code and continue, as well as inspect and watch variables
3.4 SHAM Integration

ECP will need to have authentication and authorization code built in. Some of this code is already built into the framework, such as the start up of the Authorization Manager Servlet when ECP server is started. This allows ECP to validate the user login and to get roles for the user. However, since the Authorization Manager and EAS uses Siteminder for logins and roles, when we are in development, we do not have the ability to use Siteminder. Therefore, a simulator (named SHAM) must be used to simulate the user login and allow Authorization Manager to start and access data correctly. SHAM acts as a proxy of sorts and intercepts the HTTP request and puts the required data into session to pass on to the ECP Server, and returning the response. The SHAM application has been placed at:
I:\PSCAO-Internal\CSSG\ECP\Development\Sham.zip

Eclipse has the capability to run External Tools. We can start Sham from within Eclipse.
· Copy Sham.zip to your local drive and unzip to c:\

· Select Run -> External Tools -> Open External Tools Dialog
· Right mouse click Program -> New

· Change the Name to Sham

· Location: C:\Sham\runsham.bat
· Working Directory: c:\sham
· Click the Environment Tab and select New

· Name: JAVA_HOME

· Value: C:\softwaredistribution\Sun\SDK\jdk
· Click Close

· To start, select Run -> External Tools -> Sham

We notice when we setup JBoss, that we are set to listen on port 9081. However, since we need to send our HTTP requests to Sham, after we start Sham, we need to change the 2 parameters at the top.

· With Sham started, change the Listener Port to 8080

· Change the Server Port to 9081

· Your test URL will now be http://localhost:8080/.......
4. Eclipse Projects

This section describes the 6 Projects that comprise the ECP Project. It will describe the packages and locations of files contained within the projects.

4.1 ECP-WAR

The ECP-WAR project contains the JSP’s, forms, actions, style sheets, images and all related files for the Web side of ECP. The following table provides samples of the files and their respective locations:
	File Type
	Location

	Boot Servlet (contains startup for ECP)
	Java Resources/Boot/ gov.usda.fsa.ecp.presentation.boot

	Common UI Utility Classes
	Java Resources/Utilities/ gov.usda.fsa.ecp.presentation.common gov.usda.fsa.ecp.presentation.resources gov.usda.fsa.esp.presentation.util

	Struts Action Classes
	Java Resources/Presentation gov.usda.fsa.wa.ecp.xxx.action where xxx is a common web section (ex. DisasterID)

	Struts Form Classes
	Java Resources/Presentation gov.usda.fsa.wa.ecp.xxx.form where xxx is a common web section (ex. DisasterID)

	Application JSP Pages
	WebContent/jsp/xxx where xxx is a common web section (ex. DisasterID)

	Common JSP Pages for layout purposes
	WebContent/common WebContent/content WebContent/layout WebContent/theme

	Images
	WebContent/images

	Libraries (only Web related)
	WebContent/WEB-INF/lib

	Tag Lib TLD’s
	WebContent/WEB-INF/tlds

	Configuration files (struts, tiles, etc)
	WebContent/WEB-INF

	Ant Build XML
	Build.xml – this will build the WAR file for distribution

	ApplicationResources.properties
	WebContent/WEB-INF/lib - contains key/value pairs for application lookup

	Displaytag.properties
	WebContent/WEB-INF/lib – contains the display tag configuration

4.2 ECP-Services

The ECP-Services project contains the Business Services, Persistent Services, Data Access Objects (DAO’s), Business Objects and all files related to the Server side of the ECP Application. The following table provides samples of the files and their respective locations:

	File Type
	Location

	Business Service Classes
	JavaSource/Business gov.usda.fsa.busdom.bo.ecp.service

	Business Objects
	JavaSource/Business gov.usda.fsa.busdom.bo.ecp.object

	Persistent Service Classes
	JavaSource/Persistence gov.usda.fsa.perdom.po.ecp.service

	Persistent DAO’s
	JavaSource/Persistence gov.usda.fsa.perdom.po.ecp.dao

	Database Related Classes (framework)
	JavaSource/Persistence gov.usda.fsa.perdom.query

	Service Utility Classes
	JavaSource/Utilities gov.usda.fsa.util.ecp.util

	Ant Build XML
	Build.xml – this will build the jar file for distribution

4.3 ECP-EAR

The ECP-EAR project contains the common libraries required by the ECP Application. All projects within Eclipse can point to this project for imports. The only key file of note is the Ant Build XML file. This file will pull together the WAR and JAR file from the ECP-WEB and ECP-Services projects into the EAR deployable file, along with all the common required libraries.
4.4 ECP-Build

The ECP-Build project contains the Ant Build XML files for packaging together the WAR, JAR, common libraries into a deployable EAR file. It will perform a clean on each project and call the respective ANT Build XML files in order to build each project. The only key file of note is the local.properties file that is modified in the “Building ECP” section.

4.5 ECPTestWeb
The ECPTestWeb project contains the TestSuite and TestCases for performing Automated Testing on the ECP Application. The following table provides samples of the files and their respective locations:

	File Type
	Location

	Boot Servlet (contains startup for ECPTestWeb)
	JavaSource/Boot/ gov.usda.fsa.ecp.boot

	Test Cases
	JavaSource/TestCases gov.usda.fsa.ecp.test.common

	Libraries (only Test Web related)
	WebContent/WEB-INF/lib

	Configuration files
	WebContent/WEB-INF

	Ant Build XML
	Build.xml – this will build the WAR file for distribution

4.6 ECPTestEAR
The ECPTestEAR project contains the common libraries required by the ECPTest Application. ECPTestWare within Eclipse can point to this project for imports. The only key file of note is the Ant Build XML file. This file will pull together the WAR and JAR files from the ECPTestWeb and ECPTestEAR projects into the EAR deployable file, along with all the common required libraries.
5. Development Process

The following sections will describe the basic steps for adding new functionality to the ECP Application.
5.1 Adding a new JSP
The ECP-WEB Project uses Struts and Tiles for its MVC architecture. To add a new JSP, we need to define the JSP, modify struts configuration, add new forms and actions for struts use and define the tile layout. (For steps below, replace New with your specific name)
· Create a new JSP file under WebContent/jsp/XXX/NewFile.jsp

· Create a new Struts Action class extending ECPAction at JavaResources/Presentation/gov.usda.fsa.wa.ecp.XXX.action.NewAction.java

· Create a new Struts Form class extending ECPForm at JavaResources/Presentation/gov.usda.fsa.wa.ecp.XXX.form.NewForm.java

· Create a new Tiles Definition in WebContent/WEB-INF/tile-defs.xml Your body value should be that of your new JSP created above. Give your definition name a distinct name.

<definition name="tiles.common.NewTile" extends="application.base">

<put name="title" value="New Home" type="string" />

<put name="body" value="/jsp/XXX/NewFile.jsp" type="page" />

</definition>
· Create a new Action Mapping in WebContent/WEB-INF/struts-config.xml

<action path="/example" type="gov.usda.fsa.wa.ecp.XXX.action.NewAction" name="NewForm" scope="session" validate="false">

<forward name="view" path="tiles.common.NewTile" />
</action>

· Create the new Form Bean mapping in WebContent/WEB-INF/struts-config.xml
<form-bean name = “NewForm” type=”gov.usda.fsa.wa.ecp.XXX.form.NewForm” />

5.2 Adding a new Business Service

Business Service classes are called by the Struts Action classes to provide the business functionality. This may include calling the Persistence Service to obtain data needed to populate forms on the screen, or passing data to be persisted to the database. Business type edits are also performed in these services. Business Services exist in the ECP-Services project. Contract Classes will be implemented that define what the Business Service expects as input.
· Add a new class gov.usda.fsa.busdom.bo.ecp.service.NewBusinessService.java

· Extend the ECPBusinessService and create the new class as a Singleton providing a getInstance() method

· This can now be called from the action

NewBusinessService.getInstance().methodToCall();

· Add a new class gov.usda.fsa.busdom.bo.ecp.contract to describe the expected input to the new Business Service
5.3 Adding a new Persistence Service
Persistence Service classes are called by the Business Service classes to provide access to some data store. This is done thru the use of DAO’s. Persistence Services exist in the ECP-Services project. Contract Classes will be implemented that define what the Business Service expects as input.
· Add a new class gov.usda.fsa.perdom.po.ecp.service.NewPersistentService.java
· Create the new service as a Singleton providing a getInstance() method

· Add a new class gov.usda.fsa.perdom.po.ecp.dao.NewClassDAO.java

· The NewClassDAO.java will extend ECPDAO and the persistent methods will create inner class ECPQuery methods for getBeanClass() and getQueryString()

· The NewPersistentService.java can invoke the DAO via
NewClassDAO.getInstance().methodToCall();

· Add a new class gov.usda.fsa.perdom.po.ecp.service to describe the expected input to the Persistent Service.

· The Business Service can invoke the Persistent Service via

NewPersistentService.getInstance().methodToCall();
5.4 Reporting
Jasper Reports will be used for ECP Application Reporting. The Jasper Framework will be setup and example reports will be created. At that time, this section will be filled in with corresponding detail.
6. Testing Procedures

This section will describe the basic steps and setup to perform automated testing for the ECP Application. The automated scripts will perform the following functions:
· Check out ECP Application source code from ClearCase repository

· Compile and Instrument the ECP Application for EMMA Code Coverage

· Deploy application to JBoss Server and start Server

· Call TestSuite and stop Server
· Generate reports for Execution of Test Cases, Code Coverage, NCSS Metrics, JDepend Metrics, and PMD RuleSets

6.1 Automated Testing Setup

Obtain the scripting source code from the ClearCase repository.

· Click Start -> Programs -> Rational Software -> Rational ClearCase -> Project Explorer

· Expand SRM-SoftwareDevPV -> PSCAO-Projects -> PSCAOBLD_ML -> PSCAOBLD_ML_Int

· Right mouse click on current development view (as of this writing, PSCAOBLD_ML_dev) and click Create View

· Uncheck the “Create an integration view” checkbox

· Make sure “Create a development view” option has “Snapshot” selected

· Click next -> next -> finish -> OK

· Your view should be created with the current version of ECP scripts for automated testing
6.2 Creating Test Cases

Test Cases should be created to test both Functional and Unit Testing. This includes Test Cases for:
· Happy path scenarios

· Data Validation

· Create Data to insert into database

· Retrieve Data from database

· Compare results to make sure match

· Contract Failure scenarios

· Business Failure scenarios

To create a new Test Case:
Create a new class in the ECPTestWeb project under gov.usda.fsa.ecp.test.common

· Make sure the name of the class ends with TestCase (ex. StateFindTestCase)

· Extend from ECPTestCase

· Create methods that start with test (ex. testStateFind_happyPath)

· Create assertions at the end of each test method to test for success/failure (see junit.framework.Assert class for options)

6.3 Executing Test Scripts

There are 3 batch files or types of tests that can be triggered, 1 for TCO, 1 for nightly runs/reporting to send to CTOR’s and 1 for developers. The test for developers is what this document will focus on and describe.
To run the developer automated testing:

· Open a dos command window

· cd to your views directory (ex. C:\views)\viewname\ECPBLD\build\ecp\R1 directory

· run developer.bat

· Build Successful or specific errors will be displayed (errors needing to be addressed due to executing scripts, not errors related to actual Test Cases)

Note that since the ECPTestWeb is automatically created and deployed via the Ant Scripts, you can also use the URL:

 http://localhost:9081/ECPTest/ServletTestRunner?suite=gov.usda.fsa.ecp.test.ECPTestSuite
This will allow you to set break points in your Test Case classes for debugging purposes. However, the output to the browser will be more cryptic than the reports generated from the batch process.

6.4 Viewing Testing Results
To view the Testing Results, navigate to the build\report sub directory under the scripting directory from running the test scripts, and open index.html. Below is an example of the Summary Page from Automated Testing output.
[image: image1.png]
7. Diagnostics

A Diagnostics Servlet has been developed per standards requirements. The purpose is to report on status of the ECP Application as well as the systems ECP interfaces with. To access the Diagnostics Servlet, enter the URL:

http://localhost:8080/conservation-web/ECPDiagnosticServlet
This will produce a report showing the current version of ECP, Host Name, and Header and Attribute information in the request, including eAuth information. Currently, the Diagnostic Servlet checks the status of the ECP and MRT Database connections. This will need to be expanded to verify other connections as they are included in the ECP Application. Below is a sample output from the Diagnostic Servlet.
[image: image2.png]
8. External System Interfaces

This section will be filled in at a later time. Place holder only.
8.1 SCIMS

8.2 Farm Records

8.3 CBS/MRT
Document Revision History

	Creation Date
	Version
	Summary of Changes
	Author

	04-15-2008
	1.0
	Original
	Daryl Broxterman

	05-05-2008
	1.1
	Added Automated Testing
	Daryl Broxterman

ECP Development Guide

USDA Farm Service Agency

Date of Publication:	15 March 2008

Prepared By:	Daryl Broxterman SAIC/USDA

NOTE: This document should not be considered a template for the Developer’s Guide; rather, it is a sample of one that worked well. General formatting may vary.

	[image: image5.png][image: image6.png]
	
	[image: image7.png]

	
	USDA – Farm Service Agency
	1

1 of16

_1103713830.doc
[image: image1.png]

