The Environmental Benefits of the Conservation Reserve Program (CRP)

UNITED STATES - 2010 Fiscal Year

<table>
<thead>
<tr>
<th>Land enrolled</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Million Acres</td>
<td>36.0</td>
<td>36.8</td>
<td>34.6</td>
<td>33.8</td>
<td>31.3</td>
</tr>
<tr>
<td>In Buffers Million Acres</td>
<td>1.84</td>
<td>1.90</td>
<td>2.00</td>
<td>2.01</td>
<td>2.02</td>
</tr>
<tr>
<td>In Wetlands Million Acres</td>
<td>2.01</td>
<td>2.06</td>
<td>1.98</td>
<td>1.98</td>
<td>2.05</td>
</tr>
<tr>
<td>Highly Erodible Land Million Acres</td>
<td>25.2</td>
<td>25.5</td>
<td>23.6</td>
<td>22.8</td>
<td>20.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reductions (not leaving field or intercepted by buffers)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment Million Tons</td>
<td>210</td>
<td>216</td>
<td>219</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>Nitrogen Million lbs.</td>
<td>607</td>
<td>623</td>
<td>616</td>
<td>611</td>
<td>607</td>
</tr>
<tr>
<td>Phosphorus Million lbs.</td>
<td>121</td>
<td>124</td>
<td>123</td>
<td>123</td>
<td>122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greenhouse Gas Reduction (CO2 equivalent/Year)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 Sequestered Million Metric Tons</td>
<td>51</td>
<td>50</td>
<td>48</td>
<td>47</td>
<td>44</td>
</tr>
<tr>
<td>Energy and Fertilizer Million Metric Tons</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL Million Metric Tons</td>
<td>60</td>
<td>60</td>
<td>57</td>
<td>55</td>
<td>52</td>
</tr>
</tbody>
</table>

Total: 31.3 million acres
CRP enhances wildlife habitat.

The 31.3 million acres of grass, trees, and wetlands established by CRP benefit numerous wildlife species. Several independent studies have identified benefits to multiple bird populations including:

- **Prairie Pothole Ducks** – Researchers from the United States Fish and Wildlife Service estimated that the CRP contributed to a net increase of about 2 million additional ducks per year (30 percent increase in duck production) since 1992 in North Dakota, South Dakota, and northeastern Montana. Populations fluctuate on a year-to-year basis due to differences in precipitation patterns.

- **Ringed-Neck Pheasants** – Western EcoSystems Technology, Inc. found that, in prime pheasant habitat, a 4 percent increase in CRP herbaceous vegetation was associated with a 22 percent increase in pheasant counts.

- **Sage Grouse** – The Washington Department of Natural Resources found that CRP enrollment was associated with halting a decline (25 percent between 1970 -1988) in sage grouse populations. The study found that a region without substantial CRP enrollment had continued sage grouse population decline.

- **Northern Bobwhite Quail** – Mississippi State University found that quail observations were positively related to CRP enrollment. The quail population response varies by cover and region.

- **Grassland Birds** – The CRP was identified as a ‘Reason for Hope’ for grassland birds in the 2009 ‘State of the Birds’ report, which documented serious declines in grassland birds. Researchers from the United States Fish and Wildlife Service, U.S. Geological Survey, and the University of Montana found that CRP had a large impact on grassland bird populations, including two birds designated as species of continental importance by Partners in Flight.

CRP improves water quality.

Water quality benefits accrue in two ways:

- CRP reduces the nitrogen and phosphorus leaving a field in runoff and percolate. Using models developed by the Food and Agricultural Policy Research Institute (FAPRI), in FY 2010 607 million pounds less nitrogen and 122 million pounds less phosphorus left fields due to CRP, 95 and 86 percent reductions, respectively.

- Grass filters and riparian buffers (partial field enrollments) intercept sediment, nutrients, and other contaminants before they enter waterways. FAPRI’s model estimated that in 2010, 356 million pounds of nitrogen and 72 million pounds of phosphorus were intercepted by CRP buffers nationally.

- In 2010, grass and tree plantings reduced nitrate loss by 109 million pounds. Nitrate is a form of nitrogen that is biologically available to algae. Excess nitrate contributes to the formation of hypoxic zones in the Gulf of Mexico, the Chesapeake Bay, and other waters.

- Wetlands restored and constructed by CRP improve water quality by converting nitrate / nitrogen into benign atmospheric nitrogen. In 2010, Iowa’s 65 CREP constructed wetland projects on 1,808 acres reduced nitrate runoff by nearly 650,000 pounds.

CRP sequesters carbon.

CRP sequesters more carbon on private lands than any other federally administered program. In 2010, CRP resulted in the equivalent of a 52 million metric ton net reduction in carbon dioxide (CO2) from CO2 sequestration, reduced fuel use, and nitrous oxide emissions avoided from not applying fertilizer. Carbon sequestration helps offset the release of greenhouse gases (GHG) into the atmosphere. GHG have been associated with anthropogenic climate change.

CRP protects and enhances soil productivity.

CRP conservation covers reduce erosion and protect soil productivity. By targeting fragile crop-land and placing these lands into protective conservation covers, the CRP greatly reduces sheet, rill, and wind soil erosion. Each year since 2002, CRP reduced soil erosion by 325 million tons or more from pre-CRP levels. Since 1986, CRP has reduced more than 8 billion tons of soil erosion.

CRP reduces downstream flood damage.

CRP lands reduce downstream flood damage by helping to reduce peak flows after storm events by holding and slowly releasing the storm water.

FSA is using CRP enrollment data, the USDA soils and natural resource inventories, and cooperative agreements with Federal, State, and other partners to refine these performance measures and to estimate the benefits from CRP.